0. Pycaret

0-1. AutoML

  • AutoML(Automated Machine Learning)

    • ํ˜„์žฌ์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ๋ง์€ Machine Learning Process ๋™์•ˆ ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋…ธ๋ ฅ์ด ์š”๊ตฌ๋จ

    • AutoML์€ ๊ธฐ๊ณ„ ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์—์„œ ์ˆ˜์ž‘์—…๊ณผ ๋ฐ˜๋ณต๋˜๋Š” ์ž‘์—…์„ ์ž๋™ํ™”ํ•˜๋Š” ํ”„๋กœ์„ธ์Šค

    • ๋จธ์‹ ๋Ÿฌ๋‹์„ ์ž๋™ํ™”ํ•˜๋Š” AI ๊ธฐ์ˆ 

cf) Machine Learning Process: ๋ฌธ์ œ ์ •์˜ ๊ณผ์ •, ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘, ์ „์ฒ˜๋ฆฌ, ๋ชจ๋ธ ํ•™์Šต ๋ฐ ํ‰๊ฐ€, ์„œ๋น„์Šค ์ ์šฉ

cf) ํŒŒ์ดํ”„๋ผ์ธ: ํ•œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋‹จ๊ณ„์˜ ์ถœ๋ ฅ์ด ๋‹ค์Œ ๋‹จ๊ณ„์˜ ์ž…๋ ฅ์œผ๋กœ ์ด์–ด์ง€๋Š” ํ˜•ํƒœ๋กœ ์—ฐ๊ฒฐ๋œ ๊ตฌ์กฐ

0-2. Pycaret

  • Low-code machine learning

  • AutoML์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ด์ฃผ๋Š” ํŒŒ์ด์ฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ

  • scikit-learn ํŒจํ‚ค์ง€ ๊ธฐ๋ฐ˜

  • ๋ถ„๋ฅ˜, ํšŒ๊ท€, ๊ตฐ์ง‘ํ™” ๋“ฑ ๋‹ค์–‘ํ•œ ๋ชจ๋ธ ์ง€์›

cf) low-code: ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜๊ณผ ์‹œ์Šคํ…œ์„ ๋นŒ๋”ฉํ•  ๋•Œ ๊ฑฐ์˜ ์ฝ”๋”ฉ์ด ํ•„์š” ์—†๋Š” ๋ฐฉ์‹์˜ ์†Œํ”„ํŠธ์›จ์–ด



- setup

- compare models

- create and store models in variable

- blend models

- stack models


# **1. ๋ฐ์ดํ„ฐ ์ค€๋น„**

- ๋ฐ์ดํ„ฐ๋Š” ์ด์ „ ์˜ˆ์ œ์—์„œ ๋‹ค๋ฃฌ house price ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉ



! pip install pycaret



```python
### Import libraries

import numpy as np 
import pandas as pd 

from pycaret.regression import * # pycaret์—์„œ ํšŒ๊ท€ ๊ด€๋ จ ๋ชจ๋“ˆ import
### Import dataset

train = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/ECC 48แ„€แ…ต แ„ƒแ…ฆแ„€แ…ชB/10แ„Œแ…ฎแ„Žแ…ก/data/house_price_train.csv')
test  = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/ECC 48แ„€แ…ต แ„ƒแ…ฆแ„€แ…ชB/10แ„Œแ…ฎแ„Žแ…ก/data/house_price_test.csv')
sample= pd.read_csv('/content/drive/MyDrive/Colab Notebooks/ECC 48แ„€แ…ต แ„ƒแ…ฆแ„€แ…ชB/10แ„Œแ…ฎแ„Žแ…ก/data/house_sample_submission.csv')
train.head()
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
0 1 60 RL 65.0 8450 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 2 2008 WD Normal 208500
1 2 20 RL 80.0 9600 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 5 2007 WD Normal 181500
2 3 60 RL 68.0 11250 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 9 2008 WD Normal 223500
3 4 70 RL 60.0 9550 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 2 2006 WD Abnorml 140000
4 5 60 RL 84.0 14260 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 12 2008 WD Normal 250000

5 rows ร— 81 columns

### ๋ฐ์ดํ„ฐ ์ •๋ณด ํ™•์ธ

train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):
 #   Column         Non-Null Count  Dtype  
---  ------         --------------  -----  
 0   Id             1460 non-null   int64  
 1   MSSubClass     1460 non-null   int64  
 2   MSZoning       1460 non-null   object 
 3   LotFrontage    1201 non-null   float64
 4   LotArea        1460 non-null   int64  
 5   Street         1460 non-null   object 
 6   Alley          91 non-null     object 
 7   LotShape       1460 non-null   object 
 8   LandContour    1460 non-null   object 
 9   Utilities      1460 non-null   object 
 10  LotConfig      1460 non-null   object 
 11  LandSlope      1460 non-null   object 
 12  Neighborhood   1460 non-null   object 
 13  Condition1     1460 non-null   object 
 14  Condition2     1460 non-null   object 
 15  BldgType       1460 non-null   object 
 16  HouseStyle     1460 non-null   object 
 17  OverallQual    1460 non-null   int64  
 18  OverallCond    1460 non-null   int64  
 19  YearBuilt      1460 non-null   int64  
 20  YearRemodAdd   1460 non-null   int64  
 21  RoofStyle      1460 non-null   object 
 22  RoofMatl       1460 non-null   object 
 23  Exterior1st    1460 non-null   object 
 24  Exterior2nd    1460 non-null   object 
 25  MasVnrType     1452 non-null   object 
 26  MasVnrArea     1452 non-null   float64
 27  ExterQual      1460 non-null   object 
 28  ExterCond      1460 non-null   object 
 29  Foundation     1460 non-null   object 
 30  BsmtQual       1423 non-null   object 
 31  BsmtCond       1423 non-null   object 
 32  BsmtExposure   1422 non-null   object 
 33  BsmtFinType1   1423 non-null   object 
 34  BsmtFinSF1     1460 non-null   int64  
 35  BsmtFinType2   1422 non-null   object 
 36  BsmtFinSF2     1460 non-null   int64  
 37  BsmtUnfSF      1460 non-null   int64  
 38  TotalBsmtSF    1460 non-null   int64  
 39  Heating        1460 non-null   object 
 40  HeatingQC      1460 non-null   object 
 41  CentralAir     1460 non-null   object 
 42  Electrical     1459 non-null   object 
 43  1stFlrSF       1460 non-null   int64  
 44  2ndFlrSF       1460 non-null   int64  
 45  LowQualFinSF   1460 non-null   int64  
 46  GrLivArea      1460 non-null   int64  
 47  BsmtFullBath   1460 non-null   int64  
 48  BsmtHalfBath   1460 non-null   int64  
 49  FullBath       1460 non-null   int64  
 50  HalfBath       1460 non-null   int64  
 51  BedroomAbvGr   1460 non-null   int64  
 52  KitchenAbvGr   1460 non-null   int64  
 53  KitchenQual    1460 non-null   object 
 54  TotRmsAbvGrd   1460 non-null   int64  
 55  Functional     1460 non-null   object 
 56  Fireplaces     1460 non-null   int64  
 57  FireplaceQu    770 non-null    object 
 58  GarageType     1379 non-null   object 
 59  GarageYrBlt    1379 non-null   float64
 60  GarageFinish   1379 non-null   object 
 61  GarageCars     1460 non-null   int64  
 62  GarageArea     1460 non-null   int64  
 63  GarageQual     1379 non-null   object 
 64  GarageCond     1379 non-null   object 
 65  PavedDrive     1460 non-null   object 
 66  WoodDeckSF     1460 non-null   int64  
 67  OpenPorchSF    1460 non-null   int64  
 68  EnclosedPorch  1460 non-null   int64  
 69  3SsnPorch      1460 non-null   int64  
 70  ScreenPorch    1460 non-null   int64  
 71  PoolArea       1460 non-null   int64  
 72  PoolQC         7 non-null      object 
 73  Fence          281 non-null    object 
 74  MiscFeature    54 non-null     object 
 75  MiscVal        1460 non-null   int64  
 76  MoSold         1460 non-null   int64  
 77  YrSold         1460 non-null   int64  
 78  SaleType       1460 non-null   object 
 79  SaleCondition  1460 non-null   object 
 80  SalePrice      1460 non-null   int64  
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
  • ์ผ๋ถ€ ๊ฒฐ์ธก์น˜๊ฐ€ ์กด์žฌํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

2. ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ(๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ)

  • setup() ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ์ง€์ •
reg = setup(data = train, 
             target = 'SalePrice',
             numeric_imputation = 'mean',
             categorical_features = ['MSZoning','Exterior1st','Exterior2nd','KitchenQual','Functional','SaleType',
                                     'Street','LotShape','LandContour','LotConfig','LandSlope','Neighborhood',   
                                     'Condition1','Condition2','BldgType','HouseStyle','RoofStyle','RoofMatl',    
                                     'MasVnrType','ExterQual','ExterCond','Foundation','BsmtQual','BsmtCond',   
                                     'BsmtExposure','BsmtFinType1','BsmtFinType2','Heating','HeatingQC','CentralAir',   
                                     'Electrical','GarageType','GarageFinish','GarageQual','GarageCond','PavedDrive',
                                     'SaleCondition']  , 
             ignore_features = ['Alley','PoolQC','MiscFeature','Fence','FireplaceQu','Utilities'],
             normalize = True)
  Description Value
0 Session id 679
1 Target SalePrice
2 Target type Regression
3 Original data shape (1460, 81)
4 Transformed data shape (1460, 262)
5 Transformed train set shape (1021, 262)
6 Transformed test set shape (439, 262)
7 Ignore features 6
8 Ordinal features 2
9 Numeric features 37
10 Categorical features 37
11 Rows with missing values 100.0%
12 Preprocess True
13 Imputation type simple
14 Numeric imputation mean
15 Categorical imputation mode
16 Maximum one-hot encoding 25
17 Encoding method None
18 Normalize True
19 Normalize method zscore
20 Fold Generator KFold
21 Fold Number 10
22 CPU Jobs -1
23 Use GPU False
24 Log Experiment False
25 Experiment Name reg-default-name
26 USI 6ade

3. ๋ชจ๋ธ ์„ฑ๋Šฅ ๋น„๊ต

  • models()๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Œ

    • setup์„ ํ•œ ํ›„์—๋งŒ ๊ฐ€๋Šฅ
  • compare_models()

    • models()์—์„œ ์ œ๊ณตํ•˜๋Š” ๋ชจ๋ธ๋“ค์ด๋‚˜ scikit-learn์—์„œ ์ œ๊ณตํ•˜๋Š” ๋ชจ๋ธ์„ ๋ณ„๋„๋กœ ์„ ์–ธํ•œ ์ดํ›„์— ์ž…๋ ฅํ•œ ๋ชจ๋ธ๋“ค์˜ ์„ฑ๋Šฅ(MAE, MSE, RMSE, R^2, train time)๋“ฑ์„ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ํ˜•ํƒœ๋กœ ์ œ๊ณต
compare_models()
Initiated . . . . . . . . . . . . . . . . . . 05:49:16
Status . . . . . . . . . . . . . . . . . . Fitting 10 Folds
Estimator . . . . . . . . . . . . . . . . . . Random Forest Regressor
  Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)
en Elastic Net 18364.3952 1344589957.1260 35059.9474 0.7834 0.1449 0.1024 0.8530
par Passive Aggressive Regressor 18134.1562 1374167341.7881 35373.6928 0.7773 0.1699 0.1033 2.4800
br Bayesian Ridge 19102.7516 1509230751.8566 36789.4023 0.7551 0.1706 0.1097 0.9030
omp Orthogonal Matching Pursuit 19565.0295 1604341893.6740 37530.4782 0.7370 0.1815 0.1121 1.2170
llar Lasso Least Angle Regression 19787.4115 1620639261.1369 38028.6722 0.7366 0.1867 0.1157 0.9700
dt Decision Tree Regressor 26873.8594 1656701282.2708 40601.1973 0.7338 0.2134 0.1554 0.9180
ridge Ridge Regression 20390.6023 1675546296.8694 38612.7187 0.7280 0.2029 0.1197 1.1390
lasso Lasso Regression 20348.5520 1679664973.5803 38597.0093 0.7271 0.2045 0.1196 3.0070
huber Huber Regressor 19236.5019 1766235862.2651 38848.9916 0.7128 0.2052 0.1123 1.2150
knn K Neighbors Regressor 27602.8084 2038986154.7901 44370.3270 0.6870 0.2092 0.1559 1.1220
lr Linear Regression 489462244852579.7500 25087786038259630322198507421696.0000 3296273264514296.0000 -3909394621073952604160.0000 3.5936 4067501731.2203 4.4590
lar Least Angle Regression 42521860416708132924698326635424220409273253888.0000 1844180973733323350448562275845971804997761547450196885667534503848224189678324096601303512252416.0000 429448190934811211097724065035493310127918809088.0000 -356872355765253379694331818216569495633078728307084395869623944858328491348458530144256.0000 49.8038 310381041719748206784084963210196848476160.0000 1.4570
Processing:   0%|          | 0/81 [00:00<?, ?it/s]
  Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)
gbr Gradient Boosting Regressor 16668.8275 813316846.6913 27912.6374 0.8666 0.1348 0.0963 1.9690
rf Random Forest Regressor 18261.1246 998294529.0476 31130.8689 0.8383 0.1493 0.1068 3.5390
lightgbm Light Gradient Boosting Machine 17672.3315 1012800681.3536 31313.5997 0.8345 0.1418 0.0999 1.3330
xgboost Extreme Gradient Boosting 19010.3780 1029452959.8392 31447.4011 0.8309 0.1482 0.1083 2.6500
et Extra Trees Regressor 18237.5227 1037767632.2362 31830.1485 0.8297 0.1515 0.1073 3.0070
en Elastic Net 18364.3952 1344589957.1260 35059.9474 0.7834 0.1449 0.1024 0.8530
par Passive Aggressive Regressor 18134.1562 1374167341.7881 35373.6928 0.7773 0.1699 0.1033 2.4800
ada AdaBoost Regressor 25297.1088 1483109549.4956 38170.5192 0.7603 0.2061 0.1631 1.6810
br Bayesian Ridge 19102.7516 1509230751.8566 36789.4023 0.7551 0.1706 0.1097 0.9030
omp Orthogonal Matching Pursuit 19565.0295 1604341893.6740 37530.4782 0.7370 0.1815 0.1121 1.2170
llar Lasso Least Angle Regression 19787.4115 1620639261.1369 38028.6722 0.7366 0.1867 0.1157 0.9700
dt Decision Tree Regressor 26873.8594 1656701282.2708 40601.1973 0.7338 0.2134 0.1554 0.9180
ridge Ridge Regression 20390.6023 1675546296.8694 38612.7187 0.7280 0.2029 0.1197 1.1390
lasso Lasso Regression 20348.5520 1679664973.5803 38597.0093 0.7271 0.2045 0.1196 3.0070
huber Huber Regressor 19236.5019 1766235862.2651 38848.9916 0.7128 0.2052 0.1123 1.2150
knn K Neighbors Regressor 27602.8084 2038986154.7901 44370.3270 0.6870 0.2092 0.1559 1.1220
dummy Dummy Regressor 57764.4783 6442602524.5583 79947.6263 -0.0024 0.4042 0.3610 1.1870
lr Linear Regression 489462244852579.7500 25087786038259630322198507421696.0000 3296273264514296.0000 -3909394621073952604160.0000 3.5936 4067501731.2203 4.4590
lar Least Angle Regression 42521860416708132924698326635424220409273253888.0000 1844180973733323350448562275845971804997761547450196885667534503848224189678324096601303512252416.0000 429448190934811211097724065035493310127918809088.0000 -356872355765253379694331818216569495633078728307084395869623944858328491348458530144256.0000 49.8038 310381041719748206784084963210196848476160.0000 1.4570
GradientBoostingRegressor(random_state=679)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
  • LGBM์˜ ์„ฑ๋Šฅ์ด ๊ฐ€์žฅ ์ข‹๋‹ค.

4. ๋‹จ์ผ ๋ชจ๋ธ ์ƒ์„ฑ

  • create_model()

    • ์—ฌ๋Ÿฌ ๋ชจ๋ธ์ด ์•„๋‹Œ ํ•˜๋‚˜์˜ ๋ชจ๋ธ์— ๋Œ€ํ•ด์„œ setup()์˜ ์„ค์ •๋Œ€๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๊ณ  ํ•™์Šต ๊ฒฐ๊ณผ ํ™•์ธ

    • ์„ธ๋ถ€์ ์œผ๋กœ ๊ฐ fold์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์„ ์ œ์‹œ

lgb = create_model('lightgbm')
Initiated . . . . . . . . . . . . . . . . . . 05:55:18
Status . . . . . . . . . . . . . . . . . . Loading Dependencies
Estimator . . . . . . . . . . . . . . . . . . Compiling Library
Processing:   0%|          | 0/4 [00:00<?, ?it/s]
  MAE MSE RMSE R2 RMSLE MAPE
Fold            
0 15442.1645 500820041.6930 22379.0090 0.9257 0.1161 0.0871
1 18244.9876 855920787.4039 29256.1239 0.8332 0.1369 0.1017
2 20166.5540 1435737692.1195 37891.1295 0.7530 0.1675 0.1193
3 17853.1263 1729976226.4035 41592.9829 0.6375 0.1523 0.1004
4 20165.9642 1283772957.2518 35829.7775 0.8314 0.1748 0.1221
5 16520.0521 686462662.0092 26200.4325 0.9053 0.1295 0.0917
6 17028.9203 786230258.6556 28039.7978 0.8479 0.1132 0.0887
7 16193.2443 1033335960.9131 32145.5434 0.8559 0.1365 0.0908
8 16631.2041 685488507.1789 26181.8354 0.8899 0.1640 0.1019
9 18477.0974 1130261719.9075 33619.3653 0.8654 0.1274 0.0954
Mean 17672.3315 1012800681.3536 31313.5997 0.8345 0.1418 0.0999
Std 1530.8375 365042550.9815 5679.7143 0.0797 0.0206 0.0116
  • verbose ์˜ต์…˜

    • ํ•จ์ˆ˜ ์ˆ˜ํ–‰ ์‹œ ๋ฐœ์ƒํ•˜๋Š” ์ƒ์„ธํ•œ ์ •๋ณด๋“ค์„ ํ‘œ์ค€ ์ถœ๋ ฅ์œผ๋กœ ์ž์„ธํžˆ ๋‚ด๋ณด๋‚ผ ๊ฒƒ์ธ๊ฐ€๋ฅผ ๊ฒฐ์ •

    • True์˜ ๊ฒฝ์šฐ ์ž์„ธํžˆ ์ถœ๋ ฅํ•จ

5. ๋ชจ๋ธ ํŠœ๋‹ํ•˜๊ธฐ

  • tune_model()

    • ์ž…๋ ฅํ•œ ๋ชจ๋ธ์— ๋Œ€ํ•ด์„œ hyper parameter tuning์„ ์ˆ˜ํ–‰
tuned_lgb = tune_model(lgb)
  MAE MSE RMSE R2 RMSLE MAPE
Fold            
0 16220.2312 672187894.3403 25926.5866 0.9003 0.1230 0.0895
1 18389.4504 957053892.6023 30936.2876 0.8135 0.1396 0.1032
2 18155.1805 1124713680.5994 33536.7512 0.8065 0.1665 0.1146
3 17656.8498 1042311405.3105 32284.8479 0.7816 0.1439 0.1019
4 18224.1143 1133540184.1908 33668.0885 0.8512 0.1765 0.1181
5 16493.6110 687283374.5380 26216.0900 0.9052 0.1354 0.0950
6 14976.2889 584667369.0686 24179.8960 0.8869 0.1024 0.0797
7 19611.3610 1654645129.8896 40677.3294 0.7693 0.1606 0.1084
8 16973.8506 744827085.8664 27291.5204 0.8803 0.1582 0.1068
9 20922.3215 1753138613.2070 41870.4981 0.7912 0.1580 0.1162
Mean 17762.3259 1035436862.9613 31658.7896 0.8386 0.1464 0.1033
Std 1629.3522 382505984.9453 5758.2901 0.0494 0.0211 0.0117
Processing:   0%|          | 0/7 [00:00<?, ?it/s]
Fitting 10 folds for each of 10 candidates, totalling 100 fits

6. ๋ชจ๋ธ๋ง ๊ฒฐ๊ณผ ํ•ด์„

  • interpret_model()

    • ๋ชจ๋ธ์„ ํ•ด์„

    • ํ›ˆ๋ จ๋œ ๋ชจ๋ธ ๊ฐ์ฒด์™€ ํ”Œ๋กฏ ์œ ํ˜•์„ ๋ฌธ์ž์—ด๋กœ ๋ฐ›์Œ

    • ํ•ด์„์€ SHAP๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฌํ˜„๋˜๋ฉฐ ํŠธ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์—์„œ๋งŒ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•จ

cf) pycaret.classification, pycaret.regression ๋ชจ๋“ˆ์—์„œ๋งŒ ์‚ฌ์šฉ ๊ฐ€๋Šฅ

cf) SHAP: SHapley Addictive exPlanations

!pip install shap
interpret_model(tuned_lgb)

predictions = predict_model(tuned_lgb, data = test)
sample['SalePrice'] = predictions['Label']
sample.to_csv('/content/drive/MyDrive/Colab Notebooks/ECC 48แ„€แ…ต แ„ƒแ…ฆแ„€แ…ชB/10แ„Œแ…ฎแ„Žแ…ก/data/house_sample_submission.csv',index = False)
sample.head()

ํƒœ๊ทธ: , ,

์นดํ…Œ๊ณ ๋ฆฌ:

์—…๋ฐ์ดํŠธ: